Traumatic Shoulder Instability: Treatment Options for Physicians

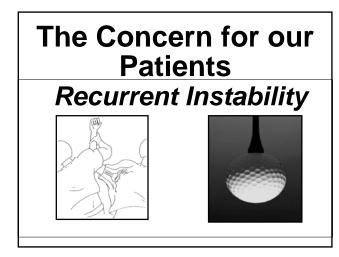
Julie Y Bishop, MD
Assistant Professor
OSU Department of Orthopaedics
September 25, 2009

Shoulder Instability: Many Types Must be clear always what we are referring to...

- Atraumatic Instability
 - ✓ Subluxations
 - ✓ Ligamentously lax patient
 - ✓ Typically no structural lesion
 - ✓ Multidirectional
 - ✓ Surgery rare

- Traumatic instability
 - ✓ Locked dislocation
 - ✓ Requires reduction
 - √ Structural damage
 - ✓ Surgery common
 - ✓ Unidirectional
 - Anterior
 - Posterior

Goals


- · Define traumatic anterior shoulder instability
- · Review the pathology involved with instability
- · Review the pathology of recurrent instability
- · Review the long-term outcomes of instability
- Discuss treatment options based on patient demographics

Most Common: Traumatic, Locked, Anterior Shoulder Dislocation

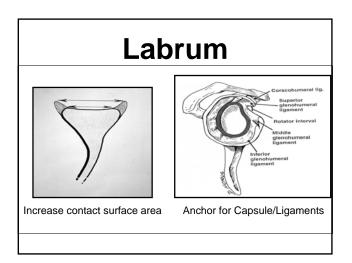
- · Common problem that is sports specific
 - √ Football
 - √ Basketball
 - √ Hockey
 - √ Wrestling
- Traumatic fall

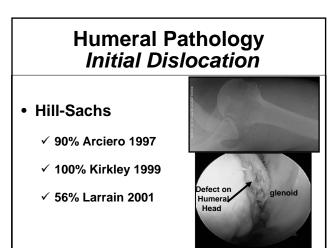
20% of shoulder injuries

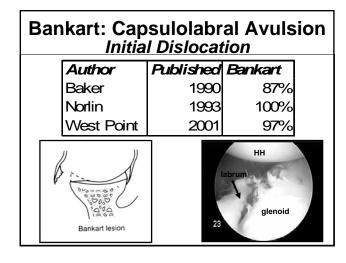
Recurrence vs. Age Natural History			
Author	Published	<i>Ag</i> e	Recurrence
McLaughlin (1950)	1950	<20	(90%)
		<40	60%
		>40	10%
Rowe	1980	<20	94%
Simonet/Cofield	1984	<30	82%
Arciero	1994	<20	80%
More Recent Studies Confirm These Results			

Recurrent Instability *Predictors*

- Age
 - **√ <20**
- Gender
 - ✓ Male
- Activity level
 - √ Contact sports




Robinson, et al. JBJS, 2006 Prognostic Level I Evidence


Pathology of an Anterior Dislocation

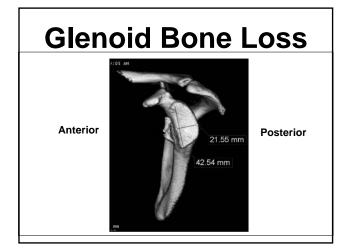
- Bankart lesion
 - ✓ Ant/inf labrum Torn
- Hill-Sachs lesion
 - ✓ Impaction of Humeral head
- Capsular deformation
 - ✓ Capsule stretches 4-7%

Recurrent Dislocations

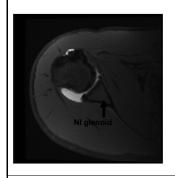
- The more dislocations, the worse the pathology
 - ✓ Increase ligament/labral damage
 - √ More capsular stretch
 - ✓ Increased Hill-Sachs lesions
 - √ Glenoid bone loss erodes glenoid
 - √ Cartilage damage

Larrain, et al. Arthroscopy, 2006 Cetik, et al. Acta Orthop Belg, 2007 Burkhart and De Beer, Arthroscopy, 2000 Boileau, et al. JBJS, 2006.

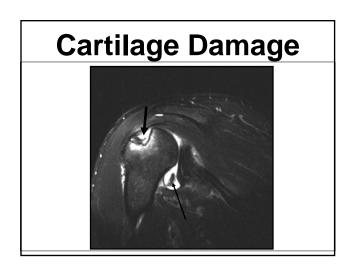
Ramifications?


Short Term

- Easier to dislocate
- Fail arthroscopy
- Require open surgery
- · Bone grafting
- Uncertain outcomes


Long Term

- Higher risk for arthritis
- More severe arthritis
- Seen at earlier age



Glenoid Bone Loss

Treatment Options

- Patient Age > 40 @ 1st dislocation
 - √ Check x-rays: make sure no fractures
 - √ Sling for comfort (typically 1-2 weeks)
 - √ Check rotator cuff exam!
 - √ Start physical therapy soon
 - Higher risk for post-dislocation stiffness
 - √ Progress all activities to tolerance

What if They Fail Conservative Tx?

- c/o Recurrent anterior dislocation
 - ✓ Halt contact sports
 - ✓ MRI/gadolineum
 - √ Refer for surgical evaluation
- c/o Subluxations
 - √ Determine if it c/o is true instability
 - ✓ MRI
 - √ When do they occur Sports versus ADL's
 - √ May be willing to give up sport but need to shower!

Treatment Options

- Patient Age > 20 yo; <40 yo
 - √ Follow same principles just outlined
 - ✓ Unlikely to have any rotator cuff pathology
 - ✓ Sedentary lifestyle unlikely to recur
 - ✓ Athletes:
 - return to sports when full motion/strength and no pain
 - √ Counsel patients accordingly:
 - Age closer to 20?
 - · Gender male higher risk
 - Activity level contact sports/martial arts/etc
 - MORE LIKELY TO HAVE A RECURRENT DISLOCATION

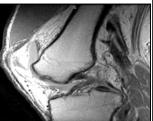
PE Findings with Anterior Instability

- Many of the exam techniques are difficult
- Often the patient is guarding during exam
- Apprehension test very reliable:

POSTERIOR PRESSURE: RELIEVES FEAR

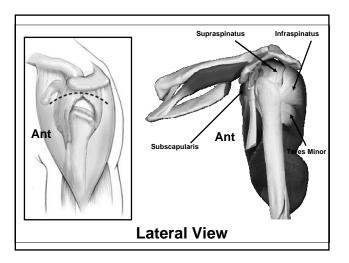
Treatment Options

- Age < 20 yo @ 1st dislocation
 - √ High chance of recurrence
 - √ Still controversial
 - ✓ Rehab/finish season
 - Surgery if sustain a recurrence
 - Surgery at end of season
 - √ OR: Stop season proceed with surgery
 - ✓ Surgery?
 - Confirm pathology with an MRI



Evaluation and Treatment of Rotator Cuff Tears

Grant L. Jones, M.D.
Associate Professor
Department of Orthopaedic Surgery
The Ohio State University


Should the Bankart Lesion be Viewed as the ACL of the Shoulder??

Rotator Cuff Tendons

- Supraspinatus
- Infraspinatus
- Teres minor
- Subscapularis

Etiology of Rotator Cuff Tears

Function of the Rotator Cuff

- · Maintenance of humeral head position in the glenoid
 - ✓ Compresses humeral head into fossa, stabilizing against superior migration and providing stable fulcrum against which rotational forces can be applied.
- Rotational power of the shoulder
- Anterior and posterior aspects of the cuff work in concert
- Loss of one or the other creates translation movement and reduces the effect of compression

Intrinsic Factors

- Degenerative or tendinosis problem, rather than true tendinitis
- Vascular factors
 - ✓ Watershed or critical zone 1 cm medial to insertion of supraspinatus tendon
 - ✓ Differential vascularity between bursal and articular surfaces
- 5 layer structure predisposes to internal shear forces resulting in intra-substance tears

Extrinsic (Impingement) Factors

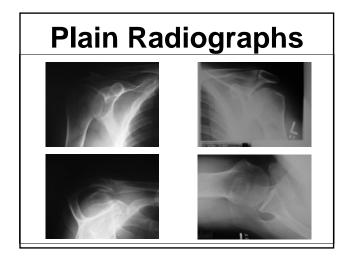
- Acromial morphology
- Anterior acromial enthesophytes
- · Unstable os acromiale
- Degenerative acromioclavicular joint
- · Internal impingement in overhead athletes

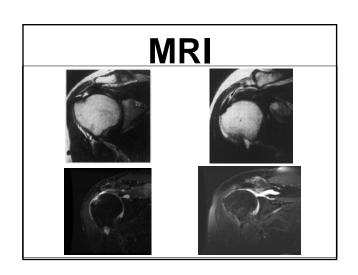
History

- Age- tears more common in older patients
- Trauma- dislocation in patients over 35, high incidence of rotator cuff tear
- · Overhead activities cause pain
- Night Pain
- · Pain over deltoid/ lateral shoulder
- · Weakness/ loss of endurance
- Crepitation

Evaluation of Rotator Cuff Disorders

Physical Examination


- Inspection- atrophy, asymmetry, deformity (long head biceps rupture)
- Palpation- AC joint, bicipital groove, greater tuberosity, crepitation
- Active and passive range of motion
- Strength testing
- Neck exam- Spurling's maneuver


Impingement Examination

- Hawkins' sign
- Neer impingement sign/test

Imaging

- Plain radiographs- AP, low-voltage AP joint view, outlet view, axillary view, internal rotation AP
- Arthrogram
- Ultrasound
- MRI
- MR Arthrogram- assess for labral tears or integrity of rotator cuff repair

Rotator Cuff Tears in Asymptomatic Patients

- Prevalence of rotator cuff tears is extremely high
- MRI of asymptomatic volunteers demonstrates partial or complete tears in 54% of people > 60 y.o. (Sher et al, 1995)
- Ultrasound of asymptomatic subjects detected a prevalence of rotator cuff tears in 40% of subjects > 50 y.o.
- Rotator cuff disease is found commonly in asymptomatic people

- Non-Surgical Management

 PT to develop stabilizing rotator cuff force couple, strengthen scapular stabilizers, and stretch tight areas of the joint capsule
- NSAID's
- · Corticosteroid injections?
 - √ Wei et al, JBJS- rat study; single dose of steroid may not have long term effects on collagen gene expression, but collagen composition may be acutely by an injection

Treatment

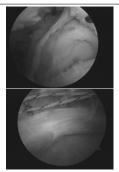
Success of Non-Operative Treatment Multi-Center Orthopaedic Outcomes Network (MOON) Group (2009)

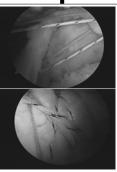
- 327 patients enrolled with chronic full-thickness rotator cuff tears
- 3 months (including surgery or cured at 6 weeks) 49/214 (22.89%)
- 1 year
 - √ 10/162 (6%) went to surgery
- - √ 0/28 have gone on to surgery
- A trial of rehabilitation may be indicated prior to proceeding with surgery in those patients with chronic full-thickness rotator cuff tears.

Surgical Indications

- Surgery indicated if acute trauma associated with significant weakness of the shoulder and posterior cuff involvement (infraspinatus, teres minor) or subscapularis involvement as seen with an anterior shoulder dislocation
- Young patients with higher functional demands
- Failure of 3-6 months of conservative management

Repair Techniques


- Open
- Mini-open- combination of open and arthroscopic surgery
- All arthroscopic


Prognostic Factors for Success of Rotator Cuff Repair

- A number of retrospective studies have identified features associated with poor outcome after surgical management:
 - Duration of symptoms
 - Fatty infiltration of the atrophied
 - Larger rotator cuff tears
 - · Age of the patient
 - Worker's Compensation claims
 - Limited pre-operative ROM
 - · Multiple comorbitities

Mini-Open Rotator Cuff Repair

All Arthroscopic Rotator Cuff Repair

Lindley and Jones, Am J Orthop, 2009

- Systematic review of literature
- No difference in clinical outcomes with arthroscopic versus open repair
- Slight decrease in pain and increase in range-of-motion in short-term with arthroscopic repair
- Slight increase in re-tear rates in larger tears (>3 cm) with arthroscopic repair

Arthroscopic Versus Open?

Conclusions

- Diagnosis is made with a thorough history and physical examination in conjunction with radiographic studies.
- Not all rotator cuff tears need repaired
- Need to develop more definitive indications for surgery based on prospective studies
- Although trend is toward less invasive surgery, there are similar clinical/ radiographic results with arthroscopic and open repair